Oxidation Numbers

What are oxidation numbers

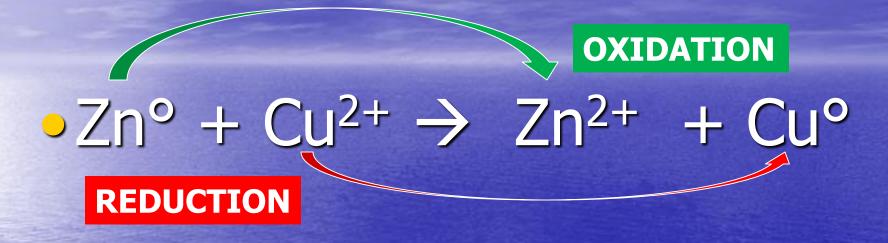
- The oxidation number of an element is the charge the element would have if it were an ion
- It helps us keep track of electrons in an oxidation-reduction reaction
- It may be real or make-believe


Oxidation

- The process whereby the <u>oxidation</u> number of an element increases
 - Becomes more positive
- Involves the *loss* of electrons
 - Electrons are a product
- $M^{\circ} \rightarrow M^{n+} + ne^{-}$
- $X \rightarrow X^{\circ} + e^{-}$
- $^{\bullet}$ M²⁺ \rightarrow M³⁺ + e⁻

Reduction

- The process whereby the <u>oxidation</u> number of an element decreases
 - Becomes more negative
- Involves the gain of electrons
 - Electrons are a reactant
- $^{\circ}$ Mⁿ⁺ + ne⁻ \rightarrow M°
- $X_2 + 2e^- \rightarrow 2X^-$
- $M^{4+} + 2e^{-} \rightarrow M^{2+}$


oxidation and reduction

oxidation — reduction reactions

- Called "redox" reactions for short
- Always occur as a pair
- One element "loses" electrons
 - -Oxidation
- One element "gains" electrons
 - -Reduction

Redox reaction examples

OXIDATION

REDUCTION

OXIDIZINGAGENT

Oxidizes something else

Contains the element being reduced

REDUCINGAGENT

reduces something else

Contains the element being oxidized

Determining oxidation numbers

- 1. The oxidation number of a free element is zero
 - Regardless of it is "monatomic" or if it has a subscript
 - ✓ Examples: Mg, O₂, P₄, Zn

Determining oxidation numbers

- 2. The oxidation number of a "monatomic" ion is the same as the charge of the ion
 - Na+ has an ox# of +1
 - S²⁻ has an ox# of -2
 - Fe $^{3+}$ has an ox# of +3
 - I- has an ox# of -1

<u>Determining oxidation numbers</u>

- 3. The sum of all the oxidation numbers of all the elements in a substance is the same as the charge of the substance
- The ox#'s in a neutral compound must all add up to zero
- The ox#'s in a polyatomic ion must all add up to the charge of the polyatomic ion

Determining oxidation numbers

- In a compound...
- 4) The ox# of fluorine is -1
- 5) the ox# of hydrogen is +1 except in a hydride, where it is -1 ex: LiH, CaH₂
- 6) the ox# of oxygen is -2
 except in peroxides and superoxides
 ex: H₂O₂, KO₂, OF₂

Oxidation Numbers

Oxidation Numbers

No, they're not checked yet